Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.
Diabetic retinopathy (DR), affecting millions globally with projections indicating a significant rise, poses a severe blindness risk and strains healthcare systems. Diagnostic complexity arises from visual symptom overlap with conditions like age-related macular degeneration and hypertensive retinopathy, exacerbated by high misdiagnosis rates in underserved regions. This study introduces TIMM-ProRS, a novel deep learning framework integrating Vision Transformer (ViT), Convolutional Neural Network (CNN), and Graph Neural Network (GNN) with multi-modal fusion. TIMM-ProRS uniquely leverages both retinal images and temporal biomarkers (HbA1c, retinal thickness) to capture multi-modal and temporal dynamics. Evaluated comprehensively across diverse datasets including APTOS 2019 (trained), Messidor-2, RFMiD, EyePACS, and Messidor-1 (validated), the model achieves 97.8\% accuracy and an F1-score of 0.96, demonstrating state-of-the-art performance and outperforming existing methods like RSG-Net and DeepDR. This approach enables early, precise, and interpretable diagnosis, supporting scalable telemedical management and enhancing global eye health sustainability.
Although deep learning has advanced automated electrocardiogram (ECG) diagnosis, prevalent supervised methods typically treat recordings as undifferentiated one-dimensional (1D) signals or two-dimensional (2D) images. This formulation compels models to learn physiological structures implicitly, resulting in data inefficiency and opacity that diverge from medical reasoning. To address these limitations, we propose BEAT-Net, a Biomimetic ECG Analysis with Tokenization framework that reformulates the problem as a language modeling task. Utilizing a QRS tokenization strategy to transform continuous signals into biologically aligned heartbeat sequences, the architecture explicitly decomposes cardiac physiology through specialized encoders that extract local beat morphology while normalizing spatial lead perspectives and modeling temporal rhythm dependencies. Evaluations across three large-scale benchmarks demonstrate that BEAT-Net matches the diagnostic accuracy of dominant convolutional neural network (CNN) architectures while substantially improving robustness. The framework exhibits exceptional data efficiency, recovering fully supervised performance using only 30 to 35 percent of annotated data. Moreover, learned attention mechanisms provide inherent interpretability by spontaneously reproducing clinical heuristics, such as Lead II prioritization for rhythm analysis, without explicit supervision. These findings indicate that integrating biological priors offers a computationally efficient and interpretable alternative to data-intensive large-scale pre-training.
Reliable long-term decoding of surface electromyography (EMG) is hindered by signal drift caused by electrode shifts, muscle fatigue, and posture changes. While state-of-the-art models achieve high intra-session accuracy, their performance often degrades sharply. Existing solutions typically demand large datasets or high-compute pipelines that are impractical for energy-efficient wearables. We propose a lightweight framework for Test-Time Adaptation (TTA) using a Temporal Convolutional Network (TCN) backbone. We introduce three deployment-ready strategies: (i) causal adaptive batch normalization for real-time statistical alignment; (ii) a Gaussian Mixture Model (GMM) alignment with experience replay to prevent forgetting; and (iii) meta-learning for rapid, few-shot calibration. Evaluated on the NinaPro DB6 multi-session dataset, our framework significantly bridges the inter-session accuracy gap with minimal overhead. Our results show that experience-replay updates yield superior stability under limited data, while meta-learning achieves competitive performance in one- and two-shot regimes using only a fraction of the data required by current benchmarks. This work establishes a path toward robust, "plug-and-play" myoelectric control for long-term prosthetic use.
Phase-field simulations of liquid metal dealloying (LMD) can capture complex microstructural evolutions but can be prohibitively expensive for large domains and long time horizons. In this paper, we introduce a fully convolutional, conditionally parameterized U-Net surrogate designed to extrapolate far beyond its training data in both space and time. The architecture integrates convolutional self-attention, physically informed padding, and a flood-fill corrector method to maintain accuracy under extreme extrapolation, while conditioning on simulation parameters allows for flexible time-step skipping and adaptation to varying alloy compositions. To remove the need for costly solver-based initialization, we couple the surrogate with a conditional diffusion model that generates synthetic, physically consistent initial conditions. We train our surrogate on simulations generated over small domain sizes and short time spans, but, by taking advantage of the convolutional nature of U-Nets, we are able to run and extrapolate surrogate simulations for longer time horizons than what would be achievable with classic numerical solvers. Across multiple alloy compositions, the framework is able to reproduce the LMD physics accurately. It predicts key quantities of interest and spatial statistics with relative errors typically below 5% in the training regime and under 15% during large-scale, long time-horizon extrapolations. Our framework can also deliver speed-ups of up to 36,000 times, bringing the time to run weeks-long simulations down to a few seconds. This work is a first stepping stone towards high-fidelity extrapolation in both space and time of phase-field simulation for LMD.
With the acceleration of urbanization, intelligent transportation systems have an increasing demand for accurate traffic flow prediction. This paper proposes a novel Graph Enhanced Spatio-temporal Hierarchical Inference Network (GEnSHIN) to handle the complex spatio-temporal dependencies in traffic flow prediction. The model integrates three innovative designs: 1) An attention-enhanced Graph Convolutional Recurrent Unit (GCRU), which strengthens the modeling capability for long-term temporal dependencies by introducing Transformer modules; 2) An asymmetric dual-embedding graph generation mechanism, which leverages the real road network and data-driven latent asymmetric topology to generate graph structures that better fit the characteristics of actual traffic flow; 3) A dynamic memory bank module, which utilizes learnable traffic pattern prototypes to provide personalized traffic pattern representations for each sensor node, and introduces a lightweight graph updater during the decoding phase to adapt to dynamic changes in road network states. Extensive experiments on the public dataset METR-LA show that GEnSHIN achieves or surpasses the performance of comparative models across multiple metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Notably, the model demonstrates excellent prediction stability during peak morning and evening traffic hours. Ablation experiments further validate the effectiveness of each core module and its contribution to the final performance.
We introduce EyeTheia, a lightweight and open deep learning pipeline for webcam-based gaze estimation, designed for browser-based experimental platforms and real-world cognitive and clinical research. EyeTheia enables real-time gaze tracking using only a standard laptop webcam, combining MediaPipe-based landmark extraction with a convolutional neural network inspired by iTracker and optional user-specific fine-tuning. We investigate two complementary strategies: adapting a model pretrained on mobile data and training the same architecture from scratch on a desktop-oriented dataset. Validation results on MPIIFaceGaze show comparable performance between both approaches prior to calibration, while lightweight user-specific fine-tuning consistently reduces gaze prediction error. We further evaluate EyeTheia in a realistic Dot-Probe task and compare it to the commercial webcam-based tracker SeeSo SDK. Results indicate strong agreement in left-right gaze allocation during stimulus presentation, despite higher temporal variability. Overall, EyeTheia provides a transparent and extensible solution for low-cost gaze tracking, suitable for scalable and reproducible experimental and clinical studies. The code, trained models, and experimental materials are publicly available.
Deep learning optimization exhibits structure that is not captured by worst-case gradient bounds. Empirically, gradients along training trajectories are often temporally predictable and evolve within a low-dimensional subspace. In this work we formalize this observation through a measurable framework for predictable gradient manifolds. We introduce two computable quantities: a prediction-based path length that measures how well gradients can be forecast from past information, and a predictable rank that quantifies the intrinsic temporal dimension of gradient increments. We show how classical online and nonconvex optimization guarantees can be restated so that convergence and regret depend explicitly on these quantities, rather than on worst-case variation. Across convolutional networks, vision transformers, language models, and synthetic control tasks, we find that gradient trajectories are locally predictable and exhibit strong low-rank structure over time. These properties are stable across architectures and optimizers, and can be diagnosed directly from logged gradients using lightweight random projections. Our results provide a unifying lens for understanding optimization dynamics in modern deep learning, reframing standard training as operating in a low-complexity temporal regime. This perspective suggests new directions for adaptive optimizers, rank-aware tracking, and prediction-based algorithm design grounded in measurable properties of real training runs.
Spatial-Temporal Graph (STG) forecasting on large-scale networks has garnered significant attention. However, existing models predominantly focus on short-horizon predictions and suffer from notorious computational costs and memory consumption when scaling to long-horizon predictions and large graphs. Targeting the above challenges, we present FaST, an effective and efficient framework based on heterogeneity-aware Mixture-of-Experts (MoEs) for long-horizon and large-scale STG forecasting, which unlocks one-week-ahead (672 steps at a 15-minute granularity) prediction with thousands of nodes. FaST is underpinned by two key innovations. First, an adaptive graph agent attention mechanism is proposed to alleviate the computational burden inherent in conventional graph convolution and self-attention modules when applied to large-scale graphs. Second, we propose a new parallel MoE module that replaces traditional feed-forward networks with Gated Linear Units (GLUs), enabling an efficient and scalable parallel structure. Extensive experiments on real-world datasets demonstrate that FaST not only delivers superior long-horizon predictive accuracy but also achieves remarkable computational efficiency compared to state-of-the-art baselines. Our source code is available at: https://github.com/yijizhao/FaST.
Remote photoplethysmography (rPPG) estimates a blood volume pulse (BVP) waveform from facial videos captured by commodity cameras. Although recent deep models improve robustness compared to classical signal-processing approaches, many methods increase computational cost and parameter count, and attention-based temporal modeling introduces quadratic scaling with respect to the temporal length. This paper proposes ToTMNet, a lightweight rPPG architecture that replaces temporal attention with an FFT-accelerated Toeplitz temporal mixing layer. The Toeplitz operator provides full-sequence temporal receptive field using a linear number of parameters in the clip length and can be applied in near-linear time using circulant embedding and FFT-based convolution. ToTMNet integrates the global Toeplitz temporal operator into a compact gated temporal mixer that combines a local depthwise temporal convolution branch with gated global Toeplitz mixing, enabling efficient long-range temporal filtering while only having 63k parameters. Experiments on two datasets, UBFC-rPPG (real videos) and SCAMPS (synthetic videos), show that ToTMNet achieves strong heart-rate estimation accuracy with a compact design. On UBFC-rPPG intra-dataset evaluation, ToTMNet reaches 1.055 bpm MAE with Pearson correlation 0.996. In a synthetic-to-real setting (SCAMPS to UBFC-rPPG), ToTMNet reaches 1.582 bpm MAE with Pearson correlation 0.994. Ablation results confirm that the gating mechanism is important for effectively using global Toeplitz mixing, especially under domain shift. The main limitation of this preprint study is the use of only two datasets; nevertheless, the results indicate that Toeplitz-structured temporal mixing is a practical and efficient alternative to attention for rPPG.
Speech-based machine learning systems are sensitive to noise, complicating reliable deployment in emotion recognition and voice pathology detection. We evaluate the robustness of a hybrid quantum machine learning model, quanvolutional neural networks (QNNs) against classical convolutional neural networks (CNNs) under four acoustic corruptions (Gaussian noise, pitch shift, temporal shift, and speed variation) in a clean-train/corrupted-test regime. Using AVFAD (voice pathology) and TESS (speech emotion), we compare three QNN models (Random, Basic, Strongly) to a simple CNN baseline (CNN-Base), ResNet-18 and VGG-16 using accuracy and corruption metrics (CE, mCE, RCE, RmCE), and analyze architectural factors (circuit complexity or depth, convergence) alongside per-emotion robustness. QNNs generally outperform the CNN-Base under pitch shift, temporal shift, and speed variation (up to 22% lower CE/RCE at severe temporal shift), while the CNN-Base remains more resilient to Gaussian noise. Among quantum circuits, QNN-Basic achieves the best overall robustness on AVFAD, and QNN-Random performs strongest on TESS. Emotion-wise, fear is most robust (80-90% accuracy under severe corruptions), neutral can collapse under strong Gaussian noise (5.5% accuracy), and happy is most vulnerable to pitch, temporal, and speed distortions. QNNs also converge up to six times faster than the CNN-Base. To our knowledge, this is a systematic study of QNN robustness for speech under common non-adversarial acoustic corruptions, indicating that shallow entangling quantum front-ends can improve noise resilience while sensitivity to additive noise remains a challenge.